Diffraction & Scattering

Neutron and Synchrotron Diffraction & Small-Angle Scattering – Four complementary methods for providing structural information

Your benefits compared to lab-based analytics

The materials that make up an industrial product often go through complicated processes before they reach their final shape and form. Every process that has been performed influences the final structure, and therefore the properties, of the product. Diffraction and Small-Angle Scattering are methods available for detecting phases and their morphologies.

Synchrotron techniques provide high transmission with light elements, and strong contrast with heavier elements. Neutron techniques, on the other hand, provide strong contrast with light elements, and higher transmission with heavier elements. This means that the four methods offer different yet complementary contrast possibilities.

Diffraction can be used for structural characterization, as well as textures and residual-stress analysis.

Small-Angle Scattering can be used for morphological characterization, such as the size, shape and orientation distributions of different kinds of materials.

Neutron and Synchrotron techniques deliver high resolution, high throughput, and allow real-time investigations. The data obtained provides the basis for further analytical capabilities, as described below.

We are looking forward to working with you.

Diffraction is used as a qualitative and quantitative measurement technology with the following analysis capabilities:

Atomic phase and structural characterization

Atomic phase and structural characterization

  • Identification of different phases, and the volume fraction of different phases
  • Characterization of grain size 
  • Characterization of textures
Residual stress analysis

Residual stress analysis

  • Quantitative analysis of strain in samples
  • Differentiation of regions with different residual stresses

The complementarity of Neutron and Synchrotron Diffraction

Selection of advantages of each technique


Neutron Diffraction

  • Higher sensitivity for light elements (such as H, B, Li)
  • Higher penetration of metallic elements (such as Ti, Cr, Fe)
  • Higher contrast difference for neighbouring elements (as example Pd and Rh)
  • Sensitive to magnetic structures 



Synchrotron Diffraction

  • Higher penetration for light elements (Such as H, B, Li)
  • Higher sensitivity for metallic elements (such as Ti Cr, Fe)
  • Higher spatial resolution compared to neutrons and lab-based X-ray systems
  • Much higher temporal resolution compared to neutrons and lab-based X-ray systems
  • Much higher sample throughput compared to neutrons and lab-based X-ray systems


Technical details of Neutron and Synchrotron Diffraction

Selection of detailed information

Information Neutron Diffraction Synchrotron Diffraction
Spot Size Up to 1 mm x 5 mm maximum Down to 40 µm x 130 µm minimum
Resolution 0.05 % 0.02 %
Temporal resolution Up to 100Hz Up to 100 KHz
Energy range

2.3–25 meV

5-38 keV

Wavelength 1.8 – 6 Å 0.3 – 2.5 Å


~ 106 cm-2 s-1

~ 1013 cm-2 s-1


The way we work with you





Applied material analytics with Neutron and Synchrotron radiation &
tailor-made infrastructure


Data analysis and interpretation




Any question? Feel free to contact us!

I have read and accepted the Terms & Conditions and Privacy Policy.