

Challenges and Opportunities in the Development of New Materials for Metal AM

Dr. Christian Leinenbach Head Advanced Processing & AM of Metals Empa Dübendorf & Thun

AND

Institute of Materials Science (IMX) EPFL Lausanne

Emerging fields of application for AM parts

Novel fields of applications require the use of advanced materials

/www.slm-solutions.com/

/www.turbosquid.com/

/www.festo.com/

Enduser requirements for AM parts

- Defect-free parts: Ensuring parts are free from structural and surface defects.
- Mechanical-physical properties: Achieving desired strength, hardness, and other material properties.
- **Surface properties and tolerances:** Meeting specific surface finish and dimensional accuracy requirements.
- Process stability and reproducibility: Maintaining consistent quality across multiple production runs.
- Transferability between LPBF machines: Ensuring parts can be produced on different Laser Powder Bed Fusion machines without loss of quality.
- **External regulations:** Complying with industry standards and regulatory requirements.
- Cost efficiency: Minimizing production costs while maintaining quality

Alloys used in metal AM

- Up until now, only relatively few alloys for AM are available on the market (~25-30)
- A few alloys have been dominating for >15 years (SS316L, In718, Ti6Al4V, AlSi10Mg).
- Most alloys were initially developed for other processes, only a few particularly for AM
- → Mainly qualification of existing alloys, less alloy development!

2017

	Produktname	Werkstoff-Typ*	Typische Anwendungen
Martensitaus- härtender Stahl	EOS MaragingSteel MS1	8 Mar 300/1.2709	Serien-Spritzgusswerkzeuge: Maschinenbauteile
Edelstahl	EOS StainlessSteel GP1	Edelstahl 17-4/1.4542	Funktionsprototypen und Serienteile, Maschinenbau und Medizintechnik
	EOS StainlessSteel PH1	härtbarer Edelstahl 15-5/1.4540	Funktionsprototypen und Serienteile, Maschinenbau und Medizintechnik
	EOS stainlessSteel 316L	1.4404/UNS \$31673	Lifestyle: Schmuck, Funktionzelemente in Yachten, Brillenfassungen etc. Luft- und Rsumfahrt: Stützburbeie, Klommern etc. Medizin: Funktionsprototypen und serienteile in z.B. Endoskopie und Orthopädie
	EOS StainlessSteel CX	Werkzeugstahl	Herstellung von Spritzgusswerkzeugen für medizinische Produkte oder Produkte aus korrosiven Kurststoffen
	EOS StainlessSteel 17-4PH	Edestahl 17-4PH/1.4542/ XSCrNiCuNb17-4 ASTM F899-12b	Medianische Geräte (z.B. Operationswerkzeug, orthopädische Instrumente) Indusztielle Anwendungen die höchste Festigleit und ausgezeichnete Härte erfordern.
Nickel-Legierung	EOS NickelAlloy IN718	Inconel [®] 718, UNS N07718, AMS 5662, W.Nr 2.4668	Funktionsprototypen und Serienteile, hochtemperaturbeständige Turbinenbauteile
	EOS NickelAlloy IN625	Inconel [®] 625, UNS N06625, AMS 5666F, W.Nr 2.4856	Funktionsprototypen und Serienteile; hochtemperaturbeständige Turbinenbauteile
	EOS NickelAlloy HX	UNS NO6002	Bei anspruchzvollen Temperaturbedingungen und hohem Oxidationarciala, z. 8. Verbrennungskammen, Nachverbenner und Apparohne in Gasturbinen (luftfahrt u. am Boden), Rügelräder, Rollenherden und Aucbauelementen für industrielle Üfen
Cobalt Chrome	EOS CobaltChrome MP1	CoCrMo Superlegierung, UNS R31538, ASTM F75	Funktionsprototypen, Serienteile, Maschinenbau, Medizintechnik, Dental
	EOS CobaltChrome SP2	CoCrMo Superlegierung	Dental-Restaurationen (Serienfertigung)
	EOS CobaltChrome RPD	CoCrMo Superlegierung	Modellgussprothesen
Titan	EOS Titanium Ti64	Ti6AHV Leichtmetall	Funktionsprototypen und Serienteile; Luft- und Raumfahrt, Motorsport etc.
	EOS Titanium Ti64EU	TigAHV EU	Funktionsprototypen und Serienteile in der Medizintechnik
	EOS Titanium TiCP**	TiCP Grade 2, 3,7035, ASTM F67 (UNS R50400), ISO5832-2)	Medizinische Implantate (fraumoplatten, CMF-, Wirbelsäulen- oder Dentalimplantate)
Aluminium	EOS Aluminium AJSi10Mg	AlSi10Ma Leichtmetall	Funktionsprototypen und Serienteile: Maschinenbau, Motorsport etc.

Material gemäß entsprechender Norm Befindet sich in der Entwicklung

Materials available from EOS

Produktklasse	Produktname	Werkstoff-Typ*	Typische Anwendungen
Stahl	EOS MaragingSteel MS1	AM56514, 18N/300	Serien-SpritzguBwerkzeuge, Maschinenbauteile
	EOS ToolSteel 1.2709	EN 1.2709	Serien-Spritzgußwerkzeuge, Maschinenbauteile
	EOS ToolSteel CM55	Kobalt-freier, ultra hochfester Stahl	Werkzeuge für die Kaltbearbeitung und Warmumformung, Komponenten im Antriebsstrang Maschinenbauteile
	EOS CaseHardeningSteel 20MnCrS	1,7147	Anwendungen in Automobil- und Maschinenbau, Getriebe, Ersatzteile
	EOS StainlessSteel GP1	Edelstahl 17-4 / 1.4542	Funktionsprototypen und Serienteile in Maschinenbau und Medizin
	EOS StainlessSteel PH1	1.4540, UNS 515500	Funktionsprototypen und Serienteile in Maschinenbau und Medizin
	EOS StainlessSteel 254	EN 1.4547	Gechlorte Salzwasser-Verarbeitungsanlagen, Zellstoff- und Papier-Herstellungsmaschinen sowie chemische Anlagen
	BOS StainlessSteel 316L	1.4441, UNS 531673, ASTM F138	Bauteile zum Einsatz in einer korrosiven Umgebung z.B. in der Medizin bei Endoskopie und Orthopädie
	EOS StainlessSteel 316L VPro	1.4404, UNS 531603	Press- und Sinteranwendungen, die eine hohe Produktivität benötigen
	EOS StainlessSteel CX	Ausscheidungshärtbarer Werkzeugstahl	Spritzgu®werkzeuge für korrosive Kunststoffe und Gummi-Teile, Maschinenbau
	BOS StainlessSteel 17-4PH	1.4542, UNS 17400, ASTM A564M	Säure- und korrosionsbeständige Maschinenbauteil Medizin (chirurgische, orthopädische Instrumente)
	EOS StainlessSteel SuperDuplex	Austenitisch-ferritischer Duplex-Edelstahl	Öl- und Gasindustrie, Zellstoff- und Papier- Herstellungsanlagen, Bergbau- und Offshore- Anlagen
Nickel	EOS NickelAlloy HAYNES® 282®	AMS5951 Rev. A Section 3.1, UNS N07208	Komponenten für die Luft- und Raumfahrt sowie Energiewirtschaft
	EOS NickelAlloy HX	UNS N06002, AMS 5390	Hochtemperatur-Anwendungen, die eine exzellente Oxydationsbeständigkeit bei bis zu 1 200 °C benötigen
	EOS NickelAlloy IN718	UNS N07718, AMS 5662, AMS 5664, 2.4668, NiCr19Fe19NbMo3	Belastete Komponenten in Hochtemperatur- Anwendungen bis zu 700 °C, gutes Potential für Tieftemperatur-Anwendungen
	EOS NickelAlloy IN625	UNS N06625, AMS 5666, AMS 5599, 2.4856, NiCr22Mo9Nb	Komponenten zur Verwendung in korrosiver Umgebung, gutes Potential für Tieftemperatur- Anwendungen
	EOS NickelAlloy IN939	Inconel™ 939	Maschinenbauteile, die exzellente mechanische Eigenschaften (Ermüdung, Creep) und auch Korrosions- sowie Oxidationsbeständigkeit bei bis z 850 °C fordern

2024

Produktklasse	Produktname	Werkstoff-Typ*	Typische Anwendungen	
Kobalt-Chrom	EOS CobaltChrome MP1	UNS R31537, ISO 5832-4, ASTM F75, ISO 5832-12, ASTM F1537	Medizinische Implantate mit hoher Beständigkeit gegen Abnutzung und Korrosion, Hochtemperatur- Komponenten in der Luft- und Raumfahrt	
Kupfer	EOS Copper Cu	Hochreines Kupfer	Wärmetauscher, Elektronik, vielfältige industrielle Anwendungen, die eine gute Leitfähigkeit verlangen	
	EOS Copper CuCP	Rein-Kupfer	Elektrische Motoren, Induktoren, vielfältige industrielle Anwendungen, die eine exzellente Leitfähigkeit verlangen	
	EOS CopperAlloy CuCrZr	C18150, CW106C	Raketentriebwerks-Teile, Wärmetauscher, Induktionsspulen	
Titan	EOS Titanium Ti64 EOS Titanium Ti64 Grade 5	TiGA14V, ISO5832-3, ASTM F1472, ASTM F2924, ASTM F3302	Serienprodution von Teilen in der Luft- und Raumfahrt, Medizin und Automobilindustrie	
	EOS Titanium Ti64EU EOS Titanium Ti64 Grade 23	TIGAI4V ELI, ASTM F136, ASTM F3001, ASTM F3302	Serienproduktion von Teilen in der Medizin (z.B. Rückenimplantate, Kniegelenke, Kniescheiben, usw.)	
	EOS Titanium TiCP	ASTM F67, ISO 5832-2	Serienproduktion von Teilen in der Medizin (z.B. Traumaplatten, Schädelimplantate, usw.)	
Aluminium	EOS Aluminium AlSi10Mg	AlSi10Mg	Maschinenbau-Komponenten und Teile in der Luft- und Raumfahrt- sowie Automobil-Industrie dir hohen Lasten ausgesetzt sind, Ersatz von Gußteilen aus AlSi10Mg	
	EOS Aluminium AIF357	AISi7Mg0,6, SAE AMS 4289	Strukturbauteile in der Luft- und Raumfahrt- sowie Automobil-Industrie, die ausgewogene mechanische Eigenschaften fordern	
	EOS Aluminium Al2139 AM	Aluminium Association Teal Sheet für Al2139, modifiziert für DMLS	Produktions-Teile in Luft- und Raumfahrt, Rennen, Transport und Mobilität, Bauteile mit Leichtbau-Teile	
Refraktäre Metalle EOS Tungsten W1		Reines Wolfram	Dünnwandige Teile zur Verwendung in Führungs- strukturen in der Röntgenbildgebung, z.B. Röntgenraster	

eb in der Entwicklung

/www.eos.info/

Material challenges during LPBF – what can go wrong?

- Many alloys that are of interest for novel applications (high strength Ni & Al alloys, tool steels, Cu alloys, precious metal alloys, refractory alloys, shape memory alloys) are notoriously difficult to process via LPBF or DED.
- AM of these alloys can result in the formation of a variety of defects, complex microstructures and anisotropic properties

The L-PBF process - complex thermal histories

- The L-PBF process involves multiple times remelting and rapid solidification of alloy powder, resulting in complex thermal histories
- Advanced experimental methods and sophisticated modeling and simulation techniques have led to an improved understanding of the AM process

/J. Yang et al. Additive Manufacturing 84 (2024) 104092/

Potential defect mitigation strategies

- Understanding of the process together with metallurgical principals allow for the tailoring of alloys for AM
- Modification of existing alloys
 - to reduce/replace volatile elements (Zn, Mg etc.)
 - to increase laser absorptivity
 - to reduce melting/solidification range
 - to reduce brittleness/increase strength
 - to form inoculants for grain refinement during solidification
- Bottom-up design of novel alloys considering AM process conditions
 - Consider or even exploit rapid solidification
 - Avoid critical elements from the beginning

Research on alloys for AM at Empa

- Over the last >10 years we have optimized/developed/qualified a number of novel alloys for AM (incl. thermal post-treatment) at Empa
 - Optimization of CM247LC Ni alloy
 - Optimization of high-N and Ni-free stainless steel
 - Optimizatio/qualification of sot-martensitic steel 1.4313 for DED
 - Development of novel Zr-modified 2xxx and 5xxx Al alloys
 - Development of novel Fe-based shape memory alloys (SMA)
 - Oxide dispersion strengthened (ODS) Ni alloys

CM247LC Ni alloy

/S. Griffiths et al., Additive Manufacturing 36 (2020) 101443/ /S. Griffiths et al., Materials Characterization 171 (2021) 110815/

Zr-modified 5xxx Al alloy

/J. Croteau et al. Acta Materialia 153 (2018) 35-44/ /S. Griffiths et al., Materials Characterization 143 (2018) 34-42/

FeMnSi-based SMA)

/D. Kim et al., Adv. Mater. Interf., (2022) 2200171/

Obstacles on the way to new alloys for AM

- What hinders the development and introduction of new alloys for AM?
 - Time-consuming and costly development and qualification
 - Intensive search for suitable compositions, in particular for multicomponent alloys with potentially complex elemental interdependencies
 - Fabrication of adequate amounts of powder with desired properties
 - Machine-dependent parameter optimization
 - Fabrication and testing of numerous coupons and test parts
 - Freezing a set of parameters on a particular machine (and hoping that nothing will ever go wrong...)
 - Expectations powder producers vs. enduser (part manufacturer)
 - Endusers expect a commitment from the powder manufacturers that powders with the required properties are delivered at any time
 - Powder manufacturers expect a commitment from the endusers that a minimum quantity will be ordered over a longer period before developing new powders

/Picture by DALL·E/

 Machine learning assisted high-throughput simulations: Leveraging ML for accelerated simulation of alloy properties. CALPHAD high-throughput alloy screening process in ThermoCalc Example: development of novel eutectic HEAs

/L. Han et al., Adv. Sci. (2024) 2401559/

- Machine learning assisted high-throughput simulations: Leveraging ML for accelerated simulation of alloy properties.
- Combinatorial metallurgy: Using multi-target sputtering techniques to create combinatorial libraries of alloys.

/Y. Li et al. Scientific Reports 6 (2016) 26950/

- Machine learning assisted high-throughput simulations: Leveraging ML for accelerated simulation of alloy properties.
- Combinatorial metallurgy: Using multi-target sputtering techniques to create combinatorial libraries of alloys.
- Automated high-throughput characterization: Implementing automated characterization systems for rapid analysis of alloy samples.

/K. Wieczerzak et al., Adv. Science 10 (2023) 2302997/

- Machine learning assisted high-throughput simulations: Leveraging ML for accelerated simulation of alloy properties.
- Combinatorial metallurgy: Using multi-target sputtering techniques to create combinatorial libraries of alloys.
- Automated high-throughput characterization: Implementing automated characterization systems for rapid analysis of alloy samples.
- Rapid solidification/laser remelting: Laser melting or multi-hopper DED for alloy development.

/C. Kenel et al. Scientific Reports 7 (2017) 16358/ /C. Kenel et al., Scripta Mater 114 (2016) 117/

- Machine learning assisted high-throughput simulations: Leveraging ML for accelerated simulation of alloy properties.
- Combinatorial metallurgy: Using multi-target sputtering techniques to create combinatorial libraries of alloys.
- Automated high-throughput characterization: Implementing automated characterization systems for rapid analysis of alloy samples.
- Rapid solidification/laser remelting: Laser melting or multi-hopper DED for alloy development.
- Small-quantity powder fabrication: Producing small quantities of alloy powders for experimental purposes.

/www.amazemet.com/

- Machine learning assisted high-throughput simulations: Leveraging ML for accelerated simulation of alloy properties.
- Combinatorial metallurgy: Using multi-target sputtering techniques to create combinatorial libraries of alloys.
- Automated high-throughput characterization: Implementing automated characterization systems for rapid analysis of alloy samples.
- Rapid solidification/laser remelting: Laser melting or multi-hopper DED for alloy development.
- Small-quantity powder fabrication: Producing small quantities of alloy powders for experimental purposes.
- Automated AM parameter optimization: Using in situ and real-time monitoring in combination with ML for optimizing additive manufacturing parameters.

Conclusions

- The full potential of AM for novel, advanced applications can only be exploited if materials that fulfill the end-user's requirements and consider the AM process conditions are available
- Despite a significantly improved understanding of the AM processes, the introduction of new materials for AM is progressing slowly
- Novel alloy design strategies utilizing high-throughput simulations, sophisticated experiments, and machine learning enable the accelerated development of novel alloys for AM

Thank you for your attention

