Characterizing AM parts for residual stresses and microstructures

Villigen, 20.06.2024 Cynthia Chang

Agenda

X Motivation

× Principle of Residual Stress Analysis by Neutron Diffraction

- X Case Studies
 - X Steel Wall
 - **X** Effect of printing strategies
 - **×** Effect of energy density
 - × IN738LC
 - X Near surface residual stress
 - **x** Effect of heat treatment
 - \times Extra \rightarrow High resolution strain mapping by Bragg Edge Imaging

Motivation – Cracking of AM materials

Cracking of 3-D printed materials because of residual stress

- Quality control requires controlling residual stress after AM process
- Can we measure residual stress non-destructively?

https://www.metal-am.com/articles/how-residual-stress-can-cause-major-build-failures-in-3d-printing/?utm_source=copy&utm_medium=website&utm_campaign=SocialSnap

Principle of residual stress analysis

Strain in *hkl* set of planes
$$\varepsilon_{hkl} = \frac{d_{hkl} - d_{0,hkl}}{d_{0,hkl}}$$

d- hkl plane spacing *d*₀ – *d* of stress-free sample

4

POLDI – Residual stress analysis setup using time of flight machine

- ×Incoming neutrons with different wavelength
- × Measure at 90° → Ensure cuboidal gauge volume
- X Generalized Hooke's Law

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{pmatrix} 1-\nu & \nu & \nu \\ \nu & 1-\nu & \nu \\ \nu & \nu & 1-\nu \end{pmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \end{pmatrix}$$

 σ – stress components E – Young's modulus v – poison's ratio

Principle of residual stress analysis – Setup at POLDI

Steel Wall – printing parameters

inspire	analytics for advanced manufacturing

PBF-LB System	Aconity Midi+
Alloy	1.4404/316L
Laser power	180W
Layer thickness	30µm
Hatch distance	80µm
Spot size	80µm
Gauge Volume	3.8x3.8x3.8mm ³

A- Inspire SS316L – Effect by the printing strategy

Inspire anaxam analytics for advanced manufacturing

A- Inspire SS316L – Effect by the energy density

Inspire anaxam analytics for advanced manufacturing

× Samples → IN738LC × As printed × Heat treated

X Gauge volume X 3.8x3.8x3.8mm³ X Precipitation after heat treatment
X Induce strain age cracking

Center measurements

Off center measurements

Bragg Edge Imaging – High resolution strain measurements

Busi, M., et al. Scientific Reports (2021)

Summary

 \times Neutron Diffraction \rightarrow Non-destructive residual stress analysis

- **X** Effect of energy density
- **x** Effect of printing strategy
- **X** Effect of heat treatment

 \times Bragg edge imaging \rightarrow High resolution strain analysis

